根据Gartner《2022年人工智能技术成熟度曲线》报告,尽早采用复合型人工智能(AI)、决策智能等AI技术将给企业机构带来明显的竞争优势,缓解AI模型脆弱性引发的问题,有助于捕捉业务背景信息,推动价值实现。
已进入生产成熟期的技术,其实际效益已得到证明和认可。随着越来越多的企业机构认为风险已下降至可接受程度,AI技术的采用开始进入快速增长阶段(见图一)。
AI一直是企业、政府和社会讨论的热门话题,企业机构很难分辨哪些AI技术具有真正的业务价值。数据和分析(D&A)领导者需制定具有前瞻性的AI战略,并充分利用当前可产生重大影响的技术。
图一、2022年人工智能技术成熟度曲线

来源:Gartner(2022年7月)
合成数据
当今AI发展所面临的主要问题之一是,为有效训练AI模型而获取真实数据并进行标记,会给企业机构带来沉重的负担。此举不但耗时,而且费用高昂,但这一问题可通过合成数据来弥补。另外,合成数据在去除个人身份信息(PII)方面也有至关重要的作用。
因果人工智能
人工智能的最终价值在于提高人类的行动水平。机器学习(ML)方法根据统计关系(相关性)进行预测,无论这些关系是否构成因果关系。当需要更规范地确定哪些最佳行动可促成特定结果时,因果人工智能可发挥至关重要的作用。该方法能够提高人工智能技术的自主性、可解释性、稳健性和效率。
决策智能
决策智能是一种实用的技术,旨在准确理解决策流程以及如何根据反馈来评估、管理和改进结果,从而提高决策水平。当前,随着人工智能技术在决策中的应用日益广泛,自动决策和增强智能受到热议,这一趋势正在将决策智能推向期望膨胀期。近期的危机揭示了业务流程的脆弱性,而在企业机构重构业务流程并增强韧性、适应性和灵活性的过程中,决策智能方法和技术将发挥重要作用。依托多种软件技术的决策智能市场正快速兴起,已开始为决策者提供解决方案。
复合型人工智能
复合型人工智能产生的前提在于,任何一种人工智能方法都不能解决所有问题。目前,复合型人工智能将“连接主义”派别的方法(如机器学习)与“符号主义”等派别的方法(如基于规则的推理、图分析、基于主体的建模和优化技术等)相结合,旨在减少人工智能解决方案学习时所需的数据和能量,使抽象化机制发挥更大作用。复合型人工智能是推动决策智能市场兴起的核心因素。
生成式人工智能
目前对生成式人工智能方法的探索正在升温,并且开始在生命科学、医疗、制造、材料科学、媒体、娱乐、汽车、航空航天、国防以及能源行业证明自身的价值。生成式人工智能已催生了营销、设计、建筑和内容领域的创造性工作。技术生成的合成数据可以提高人工智能交付的准确性和速度。生成式人工智能的使用日益普遍,已上市的产品种类越来越丰富,此技术最近被积极应用于元宇宙领域。
基础模型
基础模型附带大量预训练数据集并可适用于广泛的用例,是人工智能领域发展过程中的重大进步。与以前的模型相比,基础模型能更高效地提供更先进的自然语言处理能力。基础模型已成为自然语言处理领域的首选架构,此架构还可支持计算机视觉、音频处理、软件工程、生物化学、金融和法律用例。
好文章,需要你的鼓励
AI颠覆预计将在2026年持续,推动企业适应不断演进的技术并扩大规模。国际奥委会、Moderna和Sportradar的领导者在纽约路透社峰会上分享了他们的AI策略。讨论焦点包括自建AI与购买第三方资源的选择,AI在内部流程优化和外部产品开发中的应用,以及小型模型在日常应用中的潜力。专家建议,企业应将AI建设融入企业文化,以创新而非成本节约为驱动力。
字节跳动等机构联合发布GAR技术,让AI能同时理解图像的全局和局部信息,实现对多个区域间复杂关系的准确分析。该技术通过RoI对齐特征重放方法,在保持全局视野的同时提取精确细节,在多项测试中表现出色,甚至在某些指标上超越了体积更大的模型,为AI视觉理解能力带来重要突破。
Spotify在新西兰测试推出AI提示播放列表功能,用户可通过文字描述需求让AI根据指令和听歌历史生成个性化播放列表。该功能允许用户设置定期刷新,相当于创建可控制算法的每周发现播放列表。这是Spotify赋予用户更多控制权努力的一部分,此前其AI DJ功能也增加了语音提示选项,反映了各平台让用户更好控制算法推荐的趋势。
Inclusion AI团队推出首个开源万亿参数思维模型Ring-1T,通过IcePop、C3PO++和ASystem三项核心技术突破,解决了超大规模强化学习训练的稳定性和效率难题。该模型在AIME-2025获得93.4分,IMO-2025达到银牌水平,CodeForces获得2088分,展现出卓越的数学推理和编程能力,为AI推理能力发展树立了新的里程碑。