根据Gartner《2022年人工智能技术成熟度曲线》报告,尽早采用复合型人工智能(AI)、决策智能等AI技术将给企业机构带来明显的竞争优势,缓解AI模型脆弱性引发的问题,有助于捕捉业务背景信息,推动价值实现。
已进入生产成熟期的技术,其实际效益已得到证明和认可。随着越来越多的企业机构认为风险已下降至可接受程度,AI技术的采用开始进入快速增长阶段(见图一)。
AI一直是企业、政府和社会讨论的热门话题,企业机构很难分辨哪些AI技术具有真正的业务价值。数据和分析(D&A)领导者需制定具有前瞻性的AI战略,并充分利用当前可产生重大影响的技术。
图一、2022年人工智能技术成熟度曲线
来源:Gartner(2022年7月)
合成数据
当今AI发展所面临的主要问题之一是,为有效训练AI模型而获取真实数据并进行标记,会给企业机构带来沉重的负担。此举不但耗时,而且费用高昂,但这一问题可通过合成数据来弥补。另外,合成数据在去除个人身份信息(PII)方面也有至关重要的作用。
因果人工智能
人工智能的最终价值在于提高人类的行动水平。机器学习(ML)方法根据统计关系(相关性)进行预测,无论这些关系是否构成因果关系。当需要更规范地确定哪些最佳行动可促成特定结果时,因果人工智能可发挥至关重要的作用。该方法能够提高人工智能技术的自主性、可解释性、稳健性和效率。
决策智能
决策智能是一种实用的技术,旨在准确理解决策流程以及如何根据反馈来评估、管理和改进结果,从而提高决策水平。当前,随着人工智能技术在决策中的应用日益广泛,自动决策和增强智能受到热议,这一趋势正在将决策智能推向期望膨胀期。近期的危机揭示了业务流程的脆弱性,而在企业机构重构业务流程并增强韧性、适应性和灵活性的过程中,决策智能方法和技术将发挥重要作用。依托多种软件技术的决策智能市场正快速兴起,已开始为决策者提供解决方案。
复合型人工智能
复合型人工智能产生的前提在于,任何一种人工智能方法都不能解决所有问题。目前,复合型人工智能将“连接主义”派别的方法(如机器学习)与“符号主义”等派别的方法(如基于规则的推理、图分析、基于主体的建模和优化技术等)相结合,旨在减少人工智能解决方案学习时所需的数据和能量,使抽象化机制发挥更大作用。复合型人工智能是推动决策智能市场兴起的核心因素。
生成式人工智能
目前对生成式人工智能方法的探索正在升温,并且开始在生命科学、医疗、制造、材料科学、媒体、娱乐、汽车、航空航天、国防以及能源行业证明自身的价值。生成式人工智能已催生了营销、设计、建筑和内容领域的创造性工作。技术生成的合成数据可以提高人工智能交付的准确性和速度。生成式人工智能的使用日益普遍,已上市的产品种类越来越丰富,此技术最近被积极应用于元宇宙领域。
基础模型
基础模型附带大量预训练数据集并可适用于广泛的用例,是人工智能领域发展过程中的重大进步。与以前的模型相比,基础模型能更高效地提供更先进的自然语言处理能力。基础模型已成为自然语言处理领域的首选架构,此架构还可支持计算机视觉、音频处理、软件工程、生物化学、金融和法律用例。
好文章,需要你的鼓励
这项研究由浙江大学、复旦大学等机构联合完成,提出了ReVisual-R1模型,通过创新的三阶段训练方法显著提升了多模态大语言模型的推理能力。研究发现优化的纯文本冷启动训练、解决强化学习中的梯度停滞问题、以及分阶段训练策略是关键因素。ReVisual-R1在各类推理基准测试中超越了现有开源模型,甚至在某些任务上超过了商业模型,为多模态推理研究开辟了新途径。
这项研究提出了一种名为"批评式微调"的创新方法,证明仅使用一个问题的批评数据就能显著提升大语言模型的推理能力。研究团队对Qwen和Llama系列模型进行实验,发现这种方法在数学和逻辑推理任务上都取得了显著提升,平均提高15-16个百分点,而且只需要强化学习方法1/20的计算资源。这种简单高效的方法为释放预训练模型的潜在推理能力提供了新途径。
新加坡国立大学研究团队开发了名为IEAP的图像编辑框架,它通过将复杂编辑指令分解为简单原子操作序列解决了当前AI图像编辑的核心难题。研究发现当前模型在处理不改变图像布局的简单编辑时表现出色,但在需要改变图像结构时效果差。IEAP框架定义了五种基本操作,并利用思维链推理技术智能分解用户指令,实验证明其性能显著超越现有方法,尤其在处理复杂多步骤编辑时。
Character AI的研究者开发出TalkingMachines系统,通过自回归扩散模型实现实时音频驱动视频生成。研究将预训练视频模型转变为能进行FaceTime风格对话的虚拟形象系统。核心创新包括:将18B参数的图像到视频DiT模型改造为音频驱动系统、通过蒸馏实现无错误累积的无限长视频生成、优化工程设计降低延迟。系统可让多种风格的虚拟角色与人进行自然对话,嘴型与语音同步,为实时数字人交互技术开辟了新可能。