英国数字孪生研究机构Center for Digital Built Britain (CDBB)最近完成了一个为期五年的项目,将建筑设计与数字孪生连接起来,这项研究工作促进了数据共享,改进了建筑流程。
项目完成之后,CDBB撰写了一份报告,重点关注如何使用数字孪生来实现商业、社会和环境目标。Gemini Papers探讨了将技术物理基础设施与数字副本进行匹配等问题。另一份名为“金融和数字孪生如何为地球塑造更美好未来”的白皮书也关注相同的主题。
CDBB执行董事Alexandra Bolt说:“我们需要一个为人类和地球共同构建和运营、让子孙后代共同繁荣的环境。我们相信,如果有更好的数据,就可以做出更好的决策,获得更好的结果。”
数据整合是关键
CDBB在多年研究和合作中发现,最大挑战之一是数据集成和数据共享。
“多年来我们一直在收集数据,但由于存在数据孤岛,所以没有得到充分利用,”Bentley Systems公共政策和宣传国际总监、该研究合著者Mark Coates说。
开放数据并不意味着数据是免费提供的,而是各方确定交换数据的方式,以解决所有安全和隐私问题。另一个值得注意的考量因素,是使用标准本体和框架,将数据转换为上下文,说明数据的含义。这在那些参与新建筑项目的工程师和设计师、那些专注于建筑运营的业主和技术人员、以及提供资金的政府和银行家之间,架起一座桥梁。
CDBB表示,数字孪生有巨大的潜力,在使用数据做出基础设施决策方面给投资者带来影响。前沿金融家正在探索如何利用数字孪生改善资本分配流程、帮助筛选和管理风险以及提高资产价值。其中一个典范是澳大利亚布里斯班的Cross River Rail,该项目为公共赞助的大型项目城市级数字孪生提供了催化剂,以支持更好的投资决策。
现在有私募股权公司、商业银行和机构投资者等不同类型的投资方,他们使用不同的策略创造回报。此外,各方都需要考虑如何创建数字孪生来代表各种各样的资产,从能源、铁路和水等低收益、低风险的关键资产,到数据中心、航空或港口扩建等更具机会性的投资。
与建设团队、投资方和用户合作,这对于将数字孪生与特定的投资者策略连接起来是至关重要的。例如,银行等以债务为导向的企业,使用数字孪生来管理风险,确保获得更好的利率。股权公司使用数字孪生来增加资产价值,政府则使用数字孪生来改善数据共享以让公众受益。
尽管CDBB刚刚完成了自己的使命,但包括Digital Twin Hub在内的很多项目仍在继续促进工程建设、财务和工程团队之间的广泛合作。
英国数字建筑中心国家数字孪生项目负责人Peter Al Hajj说:“我们需要围绕风险管理、ESG报告、更好的投资回报为更广泛的社区开发和定义数字孪生。”
好文章,需要你的鼓励
AI正在革命性地改变心脏疾病治疗领域。从设计微创心脏瓣膜手术到预防原理定位,机器学习和神经网络的洞察力推动了巨大进步,甚至可以构建新型移植解剖结构。数字孪生技术为个性化心血管护理提供持续预测管理。哈佛干细胞研究所的研究人员利用纳米材料和类似棉花糖机的设备,能在10分钟内制造心脏瓣膜,相比传统3周制造时间大幅缩短。这些突破性技术为每年4万名先天性心脏畸形儿童带来新希望。
Fractal AI Research实验室开发了Fathom-DeepResearch智能搜索系统,该系统由两个4B参数模型组成,能够进行20多轮深度网络搜索并生成结构化报告。研究团队创新了DUETQA数据集、RAPO训练方法和认知行为奖励机制,解决了AI搜索中的浅层化、重复性和缺乏综合能力等问题,在多项基准测试中显著超越现有开源系统,为AI助手向专业研究工具转变奠定了基础。
谷歌正在为搭载其内置信息娱乐系统的汽车推出谷歌地图实时车道引导功能,首先从极星4开始。该系统利用车辆前置摄像头和AI技术,分析车道标线和路标,为驾驶者提供更精确的车道指引和视听提示。该功能将在未来几个月内在美国和瑞典的极星4车型上推出,目前仅支持高速公路使用。
快手科技与清华大学合作发现当前AI语言模型训练中存在严重的权重分配不平衡问题,提出了非对称重要性采样策略优化(ASPO)方法。该方法通过翻转正面样本的重要性权重,让模型把更多注意力放在需要改进的部分而非已经表现良好的部分,显著提升了数学推理和编程任务的性能,并改善了训练稳定性。