根据管理咨询公司普华永道(PwC)的一项调查,获得技术投资回报的同时吸引和留住合适的人才,是阻碍组织成功实现供应链运营数字化的三大挑战。
普华永道的“供应链数字趋势调查”对全球244名运营和信息技术领导者、C级高管和其他供应链管理者进行了调查,有近80%的受访者表示,他们的技术投资并没有完全实现预期结果。
普华永道运营转型负责人Matt Comte表示:“企业看不到投资回报的原因很多。供应链是一个复杂的生态系统,由组织内外的利益相关者组成,实施单点的解决方案往往不能解决更大的问题。”
Comte说,为了在物流、交付和仓储方面做出最佳决策,企业需要一种涵盖了很多不同数据集和流程的集成方法。
Comte说,吸引和留住合适的人才,也是充分发挥企业技术投资潜力的关键。
预算限制和员工流动给供应链管理带来阻碍
近48%的受访者表示,他们遇到了员工成本方面的预算限制,超过58%的受访者表示,供应链员工流动率高于正常水平。只有23%的受访者表示,他们拥有实现未来目标所需的数字技能。
“如今,企业需要技术和职能人才,以及完善的技术平台和质量数据集,才能成功地实现供应链运营的数字化,”Comte他补充说。他认为,供应链专家需要与CIO或者数据科学工程师展开合作,打造能够提供必要洞察的AI模型。
调查发现,找到具有协作思维、了解业务且具备技术能力的员工,也是一项重大的挑战。
Comte表示,企业可以在短期内通过有效利用超大规模厂商和其他软件供应商提供的平台来应对这些挑战,最大程度上提高数据摄取、分析和建模的能力,从而产生更多的业务洞察力。
云、无代码助力供应链数字化
“行业云结合数据市场、数据交换、低代码/无代码平台的使用,可以在短期内为企业提供帮助,”Comte说。
不过从长远来看,这些措施无法克服人才方面的挑战,可能需要对现有员工队伍进行挑战,Comte说。
“CXO需要针对组织当前的问题转换可用的人才,”Comte补充说,一些流程和任务可以由机器人流程自动化(RPA)或者人工智能(AI)接管,这反过来可以释放出员工资源,让他们接受培训以实现未来的目标。
好文章,需要你的鼓励
机器人和自动化工具已成为云环境中最大的安全威胁,网络犯罪分子率先应用自动化决策来窃取凭证和执行恶意活动。自动化攻击显著缩短了攻击者驻留时间,从传统的数天减少到5分钟内即可完成数据泄露。随着大语言模型的发展,"黑客机器人"将变得更加先进。企业面临AI快速采用压力,但多数组织错误地关注模型本身而非基础设施安全。解决方案是将AI工作负载视为普通云工作负载,应用运行时安全最佳实践。
MBZUAI研究团队发布了史上最大的开源数学训练数据集MegaMath,包含3716亿个Token,是现有开源数学数据集的数十倍。该数据集通过创新的数据处理技术,从网页、代码库和AI合成等多个来源收集高质量数学内容。实验显示,使用MegaMath训练的AI模型在数学推理任务上性能显著提升,为AI数学能力发展提供了强大支撑。
面对心理健康专业人士短缺问题,谷歌、麦肯锡和加拿大重大挑战组织联合发布《心理健康与AI现场指南》,提出利用AI辅助任务分担模式。该指南构建了包含项目适应、人员选择、培训、分配、干预和完成六个阶段的任务分担模型,AI可在候选人筛选、培训定制、客户匹配、预约调度和治疗建议等环节发挥作用。该方法通过将部分治疗任务分配给经过培训的非专业人员,并运用AI进行管理支持,有望缓解治疗服务供需失衡问题。
这项由多个知名机构联合开展的研究揭示了AI系统的"隐形思维"——潜在推理。不同于传统的链式思维推理,潜在推理在AI内部连续空间中进行,不受语言表达限制,信息处理能力提升约2700倍。研究将其分为垂直递归和水平递归两类,前者通过重复处理增加思考深度,后者通过状态演化扩展记忆容量。