谷歌和AWS此前曾强调他们在机器学习模型方面展开工作,将有助于各国应对世界各地日益频繁发生的环境危机。
随着本周2021年英国联合国气候变化大会(COP26)落下帷幕,这两家公司也纷纷表示将积极应对洪水和野火等气候变化所带来的影响。
谷歌:基于机器学习的洪水预测系统
谷歌发表了一篇未经同行评议的论文,是关于谷歌基于机器学习模型的洪水预测系统,该系统号称“为机构和公众提供了精确的实时洪水预警,重点预测对象是经过测量的大型河流的洪水”,论文由谷歌研究中心和以色列耶路撒冷希伯来大学的研究人员撰写。
谷歌于2018年启动了洪水预测项目,主要是通过智能手机向受洪水影响地区的人们发送警报。该项目是谷歌危机响应计划的一个组成部分,谷歌致力于通过该计划与前线和紧急救援人员合作开发相关技术。
项目自2018年启动以来,已经扩展到印度和孟加拉国的大部分地区,覆盖约2.2亿人口。直到2021年季风季节,这一范围已经扩展到覆盖了3.6亿人居住的地区。
谷歌工程副总裁、危机响应项目负责人Yossi Matias在一篇博文中表示:“我们借助更好的洪水预测技术,已经累计发送了1.15多亿条警报,是此前发送数量的3倍。”
这种警报中不仅仅会告知河流将上涨多少厘米,而且由于采用了基于长短期记忆(LTSM)深度神经网络的新机器学习模型,现在还能够提供所谓的“淹没地图”,将洪水的范围和深度作为一个图层显示在谷歌地图上。
研究人员认为,“LSTM模型的性能优于概念模型,后者主要是对每个盆地的长期数据记录进行校准。”
谷歌研究人员表示:“虽然之前的研究提供了令人欣喜的结果,但很少能找到以机器学习模型为核心元素、能够及时准确地计算洪水预警的实操系统。”
AWS:利用机器学习等技术预防丛林火灾
与此同时,AWS一直在与澳大利亚墨尔本能源公司AusNet展开合作,以帮助缓解该地区的丛林大火。
AusNet拥有5.4万公里的电力线,为维多利亚州约150万户家庭和企业提供能源。据估计,该电网有62%是位于丛林火灾高风险地区。
AusNet此前一直使用配备了谷歌地图式的LiDAR摄像头和Amazon SageMaker机器学习的汽车,来绘制该州需要修剪植被的区域,从而帮助阻止丛林火灾威胁,以前该系统依赖于GIS(地理信息系统)并使用自定义工具来标记LiDAR点。
AusNet与AWS展开合作,利用AWS的深度学习模型、GPU实例和S3存储,实现了对LiDAR点的自动分类。
AWS在一篇博文中指出,AusNet和AWS构建了一个语义分割模型,可以准确地对导体、建筑物、电线杆、植被和其他类别的3D点云数据进行分类。
“现在团队能够以每个Epoch 10.8分钟的速度对1571个文件中的17.2 GiB未压缩数据进行模型训练,总计约6.16亿个点。推理方面,团队能够早22.1个小时内对总计15个文件中的33.6 GiB未压缩数据进行处理,这意味着平均每秒推理大约15760个点,其中包括了摊销之后的启动时间,”AWS表示。
AusNet产品经理Daniel Pendlebury表示:“能够快速准确地标记我们的航测数据,这是最大程度上降低丛林大火风险的一个关键部分。”
“通过与Amazon机器学习解决方案实验室展开合作,我们能够打造出在数据标记方面实平均准确率高达80.53%的模型,预计通过采用这套新的解决方案,我们手动进行标记的工作量会减少高达80%。”
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。