谷歌和AWS此前曾强调他们在机器学习模型方面展开工作,将有助于各国应对世界各地日益频繁发生的环境危机。
随着本周2021年英国联合国气候变化大会(COP26)落下帷幕,这两家公司也纷纷表示将积极应对洪水和野火等气候变化所带来的影响。
谷歌:基于机器学习的洪水预测系统
谷歌发表了一篇未经同行评议的论文,是关于谷歌基于机器学习模型的洪水预测系统,该系统号称“为机构和公众提供了精确的实时洪水预警,重点预测对象是经过测量的大型河流的洪水”,论文由谷歌研究中心和以色列耶路撒冷希伯来大学的研究人员撰写。
谷歌于2018年启动了洪水预测项目,主要是通过智能手机向受洪水影响地区的人们发送警报。该项目是谷歌危机响应计划的一个组成部分,谷歌致力于通过该计划与前线和紧急救援人员合作开发相关技术。
项目自2018年启动以来,已经扩展到印度和孟加拉国的大部分地区,覆盖约2.2亿人口。直到2021年季风季节,这一范围已经扩展到覆盖了3.6亿人居住的地区。
谷歌工程副总裁、危机响应项目负责人Yossi Matias在一篇博文中表示:“我们借助更好的洪水预测技术,已经累计发送了1.15多亿条警报,是此前发送数量的3倍。”
这种警报中不仅仅会告知河流将上涨多少厘米,而且由于采用了基于长短期记忆(LTSM)深度神经网络的新机器学习模型,现在还能够提供所谓的“淹没地图”,将洪水的范围和深度作为一个图层显示在谷歌地图上。
研究人员认为,“LSTM模型的性能优于概念模型,后者主要是对每个盆地的长期数据记录进行校准。”
谷歌研究人员表示:“虽然之前的研究提供了令人欣喜的结果,但很少能找到以机器学习模型为核心元素、能够及时准确地计算洪水预警的实操系统。”
AWS:利用机器学习等技术预防丛林火灾
与此同时,AWS一直在与澳大利亚墨尔本能源公司AusNet展开合作,以帮助缓解该地区的丛林大火。
AusNet拥有5.4万公里的电力线,为维多利亚州约150万户家庭和企业提供能源。据估计,该电网有62%是位于丛林火灾高风险地区。
AusNet此前一直使用配备了谷歌地图式的LiDAR摄像头和Amazon SageMaker机器学习的汽车,来绘制该州需要修剪植被的区域,从而帮助阻止丛林火灾威胁,以前该系统依赖于GIS(地理信息系统)并使用自定义工具来标记LiDAR点。
AusNet与AWS展开合作,利用AWS的深度学习模型、GPU实例和S3存储,实现了对LiDAR点的自动分类。
AWS在一篇博文中指出,AusNet和AWS构建了一个语义分割模型,可以准确地对导体、建筑物、电线杆、植被和其他类别的3D点云数据进行分类。
“现在团队能够以每个Epoch 10.8分钟的速度对1571个文件中的17.2 GiB未压缩数据进行模型训练,总计约6.16亿个点。推理方面,团队能够早22.1个小时内对总计15个文件中的33.6 GiB未压缩数据进行处理,这意味着平均每秒推理大约15760个点,其中包括了摊销之后的启动时间,”AWS表示。
AusNet产品经理Daniel Pendlebury表示:“能够快速准确地标记我们的航测数据,这是最大程度上降低丛林大火风险的一个关键部分。”
“通过与Amazon机器学习解决方案实验室展开合作,我们能够打造出在数据标记方面实平均准确率高达80.53%的模型,预计通过采用这套新的解决方案,我们手动进行标记的工作量会减少高达80%。”
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。