虽然如今的数据与分析技术已经能够为决策提供坚实的信息指引与业绩优化方向,但对传统企业来说,高效运用这些技术却往往仍无比艰难。其中的问题,也许与这些企业的既有特性相关。
成熟的企业往往已经拥有几十年甚至是上百年的历史,业务部门与办事处覆盖世界各地,内部雇员多达数千。这类企业的信息系统也已经渗透至每一个角度,在不同的平台上实现不同目的。他们的业务流程与运营体系极为复杂,但往往都面对着两大共通的痛点——牢固而僵化的决策结构,以及根深蒂固的企业文化。
当然,传统企业的领导者与高管团队也听过不少建议,例如应该像亚马逊、Netflix或者Spotify那样灵活对待自己的业务。没错,这些伟大的公司已经建立起极为成功、令人钦佩的业务,而其模式与解决方案普遍都有着电子商务公司的特点,部分公司甚至在创立之初就考虑到了数据驱动需求。很明显,这种模式并不适合一家拥有百年历史的全球制造业公司。
根据观察,不少高管面对这类建议时往往相当无奈——传统企业在模式、文化、结构与系统层面与知名科技公司完全没有任何相似之处。换句话说,这类建议太过简单粗暴,根本没有落地实践的通道。数据与分析技术的使用就是个很典型的例子,如今的人工智能(AI)与机器学习也面临着类似的难题。
数据文化冲突
成熟企业的领导者需要首先理解数据文化的真正含义:这其实是一种期望、支持并鼓励员工们使用数据制定决策并优化业务流程的文化。面对任何新建议,我们都应该问一句“有数据和分析结论作为支持吗?”人们还必须有能力访问到自己需要的数据,企业还应鼓励大家展示自己的分析结果,包括其中不那么中听、甚至可能引发抵触的结果。
硅谷的不少初创公司就是在这样的前提与考量下建立的。然而,传统企业的组织结构与系统早就已经引入了某种形式的数据分析,如今只是需要通过AI预测分析进一步做出业务优化。我认识的一位高管就来自某家顶级数据驱动型初创公司,现在在一家大型消费品公司领导数据分析。回顾当初创业时曾经理所当然的商业实践、决策流程与系统方案,他只能用“文化冲突”来形容如今的新环境。
成熟的组织在数据使用方面往往呈现出支离破碎、孤立且狭隘的特性,信息共享也面临着根深蒂固的障碍。此外还有不少人为因素,数据可访问性与分析的推广将不可避免地提高业务透明度,给传统势力造成挑战并产生大量不受待见的洞察结论。如此一来,业务部门负责人等中层管理者越是积极推进数据驱动,越是会受到感觉自己受到挑战的高管们的打压。
例如,我的一位同事就讲述过为一家金融服务分析,确定需要关闭哪些零售分部的经历。在提出建议时,零售业务负责人反驳道“我是负责零售分部工作的,我不同意这些分析结论,我们也不会关闭任何分部。”
在另一家公司,分析主管也展示了如何优化广告媒体采购决策以提高宣传效率,并建议具体工作应该由分析部门接手。广告业务负责人对此当然反应消极,还造成了极为严重的信任乃至协作关系撕裂。
提升绩效
尽管存在种种挑战,但也有不少传统企业成功吸纳了数据与分析技术这波深厚“内力”。
与其粗暴复制硅谷的方法,传统企业更应该将数据与分析融合到自己的业务当中。下面来看几点建议:
要想利用AI与机器学习技术不断提高业务绩效,建立数据文化可谓势在必行。与其强迫自己模仿科技初创企业,传统公司不妨专注于期望、支持并鼓励内部员工,着力在文化、决策与组织层面逐步引入数据与分析技术。
好文章,需要你的鼓励
树莓派基金会调查发现,尽管60%的家长认为编程是孩子的重要技能,但超过70%的家长表示孩子在正常课程中没有学习编程。该基金会CEO指出,随着AI技术快速发展,年轻人掌握技术理解和创造能力比以往更重要。超半数家长认为编程应成为必修课程,并相信学习编程能提升孩子未来职业前景。为填补学校教育空白,基金会呼吁在学校和图书馆广泛设立编程俱乐部,目标到2035年全球教授1000万儿童编程技能。
Patronus AI发布突破性研究,构建了首个系统性AI代理错误评估体系TRAIL,涵盖148个真实案例和21种错误类型。研究发现即使最先进的AI模型在复杂任务错误识别上准确率仅11%,揭示了当前AI代理系统在长文本处理、推理能力和自我监控方面的重大局限,为构建更可靠的AI系统指明方向。
文章介绍了AI大语言模型中最新的深度研究功能,这是目前最令人印象深刻的新功能之一。作者详细解析了ChatGPT、Claude和Gemini等主流模型的使用方法,并重点展示了深度研究功能的实际应用。通过实际测试,作者用ChatGPT 4.5的深度研究功能生成了一份关于1990-2025年最令人厌烦歌曲的详细报告,展示了AI如何通过思维链进行深度研究和分析。文章还提到了语音交互模式将进一步改变用户与AI的交互体验。
这项研究首次从理论和实践证明AI模型可通过模仿生物睡眠-学习周期显著提升性能。研究发现AI训练中存在自发的"记忆-压缩循环",并据此开发了GAPT算法,在大语言模型预训练中实现4.8%性能提升和70%表示效率改善,在算术泛化任务中提升35%,为AI发展指出了注重信息整理而非单纯数据扩展的新方向。