虽然如今的数据与分析技术已经能够为决策提供坚实的信息指引与业绩优化方向,但对传统企业来说,高效运用这些技术却往往仍无比艰难。其中的问题,也许与这些企业的既有特性相关。
成熟的企业往往已经拥有几十年甚至是上百年的历史,业务部门与办事处覆盖世界各地,内部雇员多达数千。这类企业的信息系统也已经渗透至每一个角度,在不同的平台上实现不同目的。他们的业务流程与运营体系极为复杂,但往往都面对着两大共通的痛点——牢固而僵化的决策结构,以及根深蒂固的企业文化。
当然,传统企业的领导者与高管团队也听过不少建议,例如应该像亚马逊、Netflix或者Spotify那样灵活对待自己的业务。没错,这些伟大的公司已经建立起极为成功、令人钦佩的业务,而其模式与解决方案普遍都有着电子商务公司的特点,部分公司甚至在创立之初就考虑到了数据驱动需求。很明显,这种模式并不适合一家拥有百年历史的全球制造业公司。
根据观察,不少高管面对这类建议时往往相当无奈——传统企业在模式、文化、结构与系统层面与知名科技公司完全没有任何相似之处。换句话说,这类建议太过简单粗暴,根本没有落地实践的通道。数据与分析技术的使用就是个很典型的例子,如今的人工智能(AI)与机器学习也面临着类似的难题。
数据文化冲突
成熟企业的领导者需要首先理解数据文化的真正含义:这其实是一种期望、支持并鼓励员工们使用数据制定决策并优化业务流程的文化。面对任何新建议,我们都应该问一句“有数据和分析结论作为支持吗?”人们还必须有能力访问到自己需要的数据,企业还应鼓励大家展示自己的分析结果,包括其中不那么中听、甚至可能引发抵触的结果。
硅谷的不少初创公司就是在这样的前提与考量下建立的。然而,传统企业的组织结构与系统早就已经引入了某种形式的数据分析,如今只是需要通过AI预测分析进一步做出业务优化。我认识的一位高管就来自某家顶级数据驱动型初创公司,现在在一家大型消费品公司领导数据分析。回顾当初创业时曾经理所当然的商业实践、决策流程与系统方案,他只能用“文化冲突”来形容如今的新环境。
成熟的组织在数据使用方面往往呈现出支离破碎、孤立且狭隘的特性,信息共享也面临着根深蒂固的障碍。此外还有不少人为因素,数据可访问性与分析的推广将不可避免地提高业务透明度,给传统势力造成挑战并产生大量不受待见的洞察结论。如此一来,业务部门负责人等中层管理者越是积极推进数据驱动,越是会受到感觉自己受到挑战的高管们的打压。
例如,我的一位同事就讲述过为一家金融服务分析,确定需要关闭哪些零售分部的经历。在提出建议时,零售业务负责人反驳道“我是负责零售分部工作的,我不同意这些分析结论,我们也不会关闭任何分部。”
在另一家公司,分析主管也展示了如何优化广告媒体采购决策以提高宣传效率,并建议具体工作应该由分析部门接手。广告业务负责人对此当然反应消极,还造成了极为严重的信任乃至协作关系撕裂。
提升绩效
尽管存在种种挑战,但也有不少传统企业成功吸纳了数据与分析技术这波深厚“内力”。
与其粗暴复制硅谷的方法,传统企业更应该将数据与分析融合到自己的业务当中。下面来看几点建议:
要想利用AI与机器学习技术不断提高业务绩效,建立数据文化可谓势在必行。与其强迫自己模仿科技初创企业,传统公司不妨专注于期望、支持并鼓励内部员工,着力在文化、决策与组织层面逐步引入数据与分析技术。
好文章,需要你的鼓励
瑞典央行与金融机构及国家安全部门深化合作,共同应对网络威胁。今年5月,瑞典遭遇大规模分布式拒绝服务攻击,政府和金融机构受到严重冲击。总理克里斯特松承诺增加资金支持,建立更强大的公私合作伙伴关系。央行将举办第二届在线网络安全挑战峰会,鼓励金融机构提升网络安全能力。瑞典金融协会敦促建立危机管理机制,与国家网络安全中心等机构协调配合。
字节跳动发布Seedream 4.0多模态图像生成系统,实现超10倍速度提升,1.4秒可生成2K高清图片。该系统采用创新的扩散变换器架构,统一支持文字生成图像、图像编辑和多图合成功能,在两大国际竞技场排行榜均获第一名,支持4K分辨率输出,已集成至豆包、剪映等平台,为内容创作带来革命性突破。
工作压力源于大脑储存混乱而非系统。本文介绍5个ChatGPT提示词,帮你将工作压力转化为结构化行动:优先级排序任务清单、快速撰写专业邮件回复、从冗长文档中提取关键信息、生成问题解决方案、高效准备会议内容。通过系统化处理工作事务,将分散的精力转为专注执行,让大脑专注于决策而非重复劳动。
红帽公司研究团队提出危险感知系统卡(HASC)框架,为AI系统建立类似"体检报告"的透明度文档,记录安全风险、防护措施和问题修复历史。同时引入ASH识别码系统,为AI安全问题建立统一标识。该框架支持自动生成和持续更新,与ISO/IEC 42001标准兼容,旨在平衡透明度与商业竞争,建立更可信的AI生态系统,推动行业协作和标准化。