今天,亚马逊云服务(AWS)宣布,半导体设计和知识产权开发与许可的全球领先企业Arm将把AWS云服务应用到包括其绝大部分电子设计自动化(EDA)的工作负载。Arm将利用基于AWS Graviton2处理器的实例(由Arm Neoverse核心提供支持),将EDA工作负载迁移到AWS,引领半导体行业的转型之路。
传统上,半导体行业使用本地数据中心完成半导体设计验证这样的计算密集型任务。为了更有效地执行验证,Arm使用云计算仿真现实世界的计算场景,并利用AWS几乎无限的存储空间和高性能计算基础架构,扩展其可以并行运行的仿真数量。自从开始向AWS云迁移以来,Arm已将AWS上EDA工作流的响应速度提高了6倍。此外,通过在AWS上运行遥测(从远程源收集和集成数据)并进行分析,Arm产生了更强大的工程、业务和运营洞察力,有助于提高工作流程效率,优化整个公司的成本和资源。在完成向AWS迁移后,Arm最终计划将全球数据中心面积至少压缩45%,将本地计算工作负载减少80%。
高度专业化的半导体设备为我们工作、生活中的一切提供着日益强大的动力,从智能手机到数据中心基础设施,从医疗设备到自动驾驶汽车。每个芯片可以包含数十亿个晶体管,这些晶体管的设计水平可以降低到几纳米的水平(比人的头发细约10万倍),可以在最小的空间内实现最佳性能。EDA是使这种极端工程可行的关键技术之一。EDA工作流程非常复杂,包括前端设计、仿真与验证,以及越来越大的后端工作负载(时序和功耗分析、设计规则检查以及其它芯片投入生产准备的应用程序)。传统上,这些高度迭代的工作流程需要花费数月甚至数年才能生产出新设备(例如一个芯片系统),需要大量的计算能力。在本地运行这些工作负载的半导体公司必须不断平衡成本、进度和数据中心资源,才能同时推进多个项目,因此可能会面临计算能力不足的问题,拖慢进度或承担维护空闲算力的成本。
通过将EDA工作负载迁移到AWS,Arm克服了传统的托管EDA工作流程的束缚,通过大规模扩展的算力获得了弹性,使其能够并行运行仿真、简化遥测和分析,减少半导体设计的迭代时间,增加测试周期却不会影响交付进度。Arm利用多种专用的Amazon EC2实例类型优化EDA工作流程,减少了成本和时间。例如,该公司使用基于AWS Graviton2的实例,实现了高性能和可伸缩性,与运行成千上万台本地服务器相比,可实现更具成本效益的运营。Arm使用了AWS Compute Optimizer服务,利用机器学习为特定工作负载推荐最佳的Amazon EC2实例类型,简化了工作流程。
除了成本优势外,Arm还利用AWS Graviton2实例的高性能,提高工程型工作负载的吞吐量,与上一代基于x86处理器的M5实例相比,每美元的吞吐量始终能提高40%以上。此外,Arm使用AWS合作伙伴Databricks的服务,在云中开发和运行机器学习应用程序,通过在Amazon EC2上运行的Databricks平台,Arm可以处理工程工作流中各个步骤的数据,为公司的硬件和软件团队生成可行的见解,在工程效率上实现可观的改进。
Arm IPG总裁Rene Haas表示:“通过与AWS合作,我们专注于提高效率和最大化吞吐量,为工程师节省了宝贵的时间,以便他们专注于创新。现在,我们可以运行基于AWS Graviton2处理器(由Arm Neoverse支持)的Amazon EC2实例,优化工程的工作流程,降低成本,加快项目进度,比以往更快、更经济地向客户提供强大的成果。 ”
AWS全球基础架构和客户支持高级副总裁Peter DeSantis表示:“ AWS提供了真正弹性的高性能计算、卓越的网络性能,以及可扩展的存储,是下一代EDA工作负载之所需。因此,我们很高兴与Arm协作,运用我们基于Arm的、高性能的Graviton2处理器,为对性能要求极其苛刻的EDA工作负载提供动力。与当前基于x86的实例相比,Graviton2处理器可提供高达40%的性价比优势。”
好文章,需要你的鼓励
Snap 推出 Lens Studio 的 iOS 应用和网页工具,让所有技能层次的用户都能通过文字提示和简单编辑,轻松创建 AR 镜头,包括生成 AI 效果和集成 Bitmoji,从而普及 AR 创作,并持续为专业应用提供支持。
这项研究提出了ORV(占用中心机器人视频生成)框架,利用4D语义占用作为中间表示来生成高质量的机器人操作视频。与传统方法相比,ORV能提供更精确的语义和几何指导,实现更高的时间一致性和控制精度。该框架还支持多视角视频生成(ORV-MV)和模拟到真实的转换(ORV-S2R),有效弥合了虚拟与现实之间的差距。实验结果表明,ORV在多个数据集上的表现始终优于现有方法,为机器人学习和模拟提供了强大工具。
这项研究由Writer公司团队开发的"反思、重试、奖励"机制,通过强化学习教导大型语言模型生成更有效的自我反思内容。当模型回答错误时,它会生成反思并二次尝试,若成功则奖励反思过程。实验表明,该方法在函数调用和数学方程解题上带来显著提升,最高分别改善18.1%和34.7%。令人惊讶的是,经训练的小模型甚至超越了同家族10倍大的模型,且几乎不存在灾难性遗忘问题。这种自我改进技术为资源受限环境下的AI应用开辟了新方向。