现如今,电商的普及对于价格而言已经没有明显的低价优势,随着移动互联网和直播的双重作用,直播带货也应运而生。按我的理解这个模式其实并不创新,早年间在只有电视的年代,电视上就有各种导购频道,里面也有大大小小的主持人从早到晚的在介绍着产品。
但是直播带货的成功还是得益于其主打的低价标签,尤其是疫情期间,大家都宅在家加速了直播带货的发展,但是现在也可以看到直播观看人数也在呈现下降趋势,大家已经比较清楚直播带货其中的模式。
直播带货的门槛是非常低的,一部手机、一个支架,几乎就可以直播卖货了。最近频频出现带货翻车现场,其实,夸大效果、虚假宣传在直播行业还是比较普遍的。翻车事件的出现,不仅会影响的产品的销售,流失用户,还可能会影响用户对主播个人形象的评价。
不论是主播还是平台,要做到长期盈利,就必须先抓好产品的质量。其实相关机构对此问题还是比较重视的,监管和处罚也已经出炉,行业也会越来越健全和完善。
当然之其中还有要探讨的是信任机制的问题,就像本期《数据故事》所说,十余年过去了,这些被信任的超级个体,并未展现出超越机构组织的境界,正在接连辜负信任他们的粉丝。
其实商品的翻车,也有主播的因素,原因还是不了解产品。低价是吸引消费者的一个手段,但作为消费者也不能盲目信任,一味地寻求低价。当然这些翻车也是一个积极地信号,将促进未来主播以及团队进一步提升专业性,因为只有这样才能真正得到消费者的认可。
好文章,需要你的鼓励
尽管许多组织在生成式人工智能方面投入巨资,但大多数并未获得预期的生产力提升。仅仅采用新技术已不足以推动生产力增长。IT领导者需要帮助员工建立相关技能,提供针对性培训,鼓励员工将AI应用于创意和创新工作。数据显示,每天使用AI的员工获得重大生产力提升的可能性是偶尔使用者的4.6倍。
Meta与华盛顿大学联合研究团队开发出无需人类标注的AI评判官自我训练框架。该方法通过生成合成对比数据、自我判断筛选和反复学习,使110亿参数的AI评判官在多项视觉语言任务中超越GPT-4o等大型模型,成本仅为传统方法的1%,为AI自主学习和评估开辟新路径。
未来生命研究所最新发布的AI安全指数显示,大型科技公司在AI安全方面表现不佳,最高仅获得C+评级。该指数评估了包括Anthropic、谷歌、Meta、OpenAI等六家主要AI实验室的透明度、技术保障和治理实践。最令人担忧的是,没有一家公司在"存在性安全"类别中获得及格分数,均无法提出可信的超级智能系统控制方案。研究表明AI能力提升速度远超安全保障发展。
华中科技大学团队开发出4DLangVGGT技术,首次实现AI系统对4D动态场景的语言理解。该技术突破传统方法需要逐场景训练的限制,能跨场景通用部署。系统结合几何感知和语义理解,不仅能识别物体还能描述其时间变化过程。实验显示在多项指标上超越现有方法1-2%,为机器人、AR/VR、智能监控等领域提供重要技术支撑。