至顶网CIO与CTO频道 05月06日 编译:一位生态科学家和一位农业经济学家介绍了为什么农业需要在作物和农田使用中融合大数据技术,发展更具可持续性的土地管理系统,他们将其称之为数字化农业。
在2020年4月份的《Nature Sustainability》上发表的一篇论文中,密歇根州立大学自然科学学院教授Bruno Basso和俄勒冈州立大学应用经济学教授John Antle认为数字化农业可以铺就农业可持续发展的道路。
该研究论文的合著者Basso表示,传感器、人工智能和预测模型的使用可以将准确性提高,达到设计通往农业可持续性发展之路的水平。但是,他警告称,除非能够证明这些系统对社区、经济和环境能够产生积极的影响,如果没有这样的激励,采用这些系统所面临的挑战就不会发生改变。
Basso表示,数字化农业是农业、科学、政策和教育交汇的地方。
Basso表示,数字化农业已经作为一种技术,已经出现了大概20年左右,但是自从90年代初GPS首次被安装在拖拉机上以来,它只是进入了初级阶段。
Basso 表示:“对于所有这一切来说,新的变化在于农艺学方面新的分析和突破,我们现在能够对于影响作物健康和单产的因素有了更深入的了解,并且找到了为什么在同一块地之内以及在不同的年份之间,作物的产量会出现变化的原因。”他说:“现在我们可以更好地管理这些变量,并最终迈向更可持续发展的农业系统,因为所需的投入可以得到更精确的投放,而不是在不需要的地方也同等投入。”
Basso表示:“和其他领域的数字化进程相比,农业板块的数字化仍然是不起眼的‘灰姑娘’……数字化农业包含了多种技术,从能够从近距离或者数千英里之外的天空中感知环境的设备到监控视频系统的芯片等。”
Basso补充表示,有了传感器,大数据分析的新方法以及通过验证的仿真模型和人工智能系统产生的预测结果已经开始对农民和环境产生积极的影响。
Basso表示:“为了增加对这些技术的使用,农民、环保主义者、科学家、政策制定者们需要坐下来,互相听取意见,搁置对因为我们不用照顾土地获得利益的争议。”
Basso表示,如果目标是增加生物多样性、减少氮肥的使用或者是减少资源密集型多年生作物的种植,那么激励至关重要。
该论文的新闻稿表示,研究人员的分析表明,如果氮肥的施用是基于需求和产量稳定性而不是均匀施用,那么美国中西部的氮肥使用量可以减少36%,同时能够显著减少地下水污染和二氧化碳排放量。
Basso希望社会能够做出这些决定,并且让社会承担相关的成本。
Basso表示:“农民们今天在他们土地上的所作所为将在未来30年内影响到邻居的孙子。”
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。