至顶网CIO与CTO频道 04月02日 编译:有关COVID-19大流行的数据迅速被整合及剪辑,一众高科技厂商为业余流行病学及数据科学工作者打造了一些分析工具栈。
结果:新冠状病毒爆发的可视化极可能是史无前例的。
COVID-19爆发后不久就出现了第一个数据分析仪表板及整合工具。该仪表板(网址)由约翰·霍普金斯大学推出,目前已成为最常用的数据来源,仪表板整合了来自世界卫生组织、美国疾病预防控制中心、WHO、NHC、DXY、1point3acres、Worldometers.info、BNO、以及美国各州和国家政府卫生部门以及各地媒体报道的资料并对其进行了可视化处理。
霍普金斯大学还将数据放在GitHub上(https://github.com/CSSEGISandData/COVID-19 )供有兴趣的人下载。该仪表板于1月23日推出,到目前为止关于COVID-19的数据集可以说是成了最具可视化性的数据集。COVID-19数据集来自各种不同的源,如何为分析提供干净的数据就成了各家努力的目标。
以下列出各家在这方面所做的一部分工作
·Tableau用上霍普金斯大学的数据并发布了一个启动仪表板。 Tableau的主要贡献是将数据做处理后提供各种格式以及可视化模板。
·开源数据集也派上了用场。研究人士和大西洋(The Atlantic)网站的写手利用开源软件将各种数据源汇集在一起。
·GitHub上的数据集含新冠状病毒的一系列数据集,data.world和Kaggle也拥有一些数据集,Kaggle上有比赛、预测和可视化等等。
·Reddit的 Data is Beautiful 分版是可视化业余爱好者和数据科学家聚集的地方。 我们的世界数据网站拥有强大的COVID-19研究和数据一览。
·Esri将自己的映射和地理定位专业知识用于COVID-19跟踪。
·雪花(Snowflake)是个云数据平台,上面介绍过数据服务公司Starschema 推出的一个免费数据集,目标是成为COVID-19发病率和死亡率真相单一源。该数据集加入了相关的人口密度及地理定位信息。
·IBM将 COVID-19数据整合到天气频道应用程序里,将气象数据和当地新型冠状病毒事件融合在一起。IBM子公司通过该天气频道程序可以将相关的COVID-19数据发送给每月3亿个活跃用户。IBM可视化方面的工作和谷歌及微软在这方面的努力类似,目的是将COVID-19数据推送给大众。
好文章,需要你的鼓励
随着5G流量快速增长和新用例不断涌现,网络运营商需要在最小化环境影响的同时管理密集网络使用。Orange法国与爱立信合作开展创新试验,测试FDD大规模MIMO天线集成无线电,优化高流量区域频谱使用。双方还探索Cloud RAN和Open RAN架构,通过虚拟化RAN功能实现灵活的软件中心网络。合作重点关注利用AI驱动的自动化和意图驱动技术提升能源效率,在不影响性能的前提下动态调整网络资源以降低能耗。
谷歌DeepMind等顶级机构联合研究揭示,当前12种主流AI安全防护系统在面对专业自适应攻击时几乎全部失效,成功率超过90%。研究团队通过强化学习、搜索算法和人类红队攻击等多种方法,系统性地突破了包括提示工程、对抗训练、输入过滤和秘密检测在内的各类防护技术,暴露了AI安全评估的根本缺陷。
微软正在将Windows 11改造为"智能代理操作系统",在任务栏中集成AI代理功能。新功能允许AI代理在后台执行任务,用户可通过任务栏图标查看进度状态。微软还在文件资源管理器中集成Copilot,提供文档摘要、文件问答等功能。此外,Click to Do功能得到改进,可将网页表格转换为Excel文档。这些AI功能采用本地AI和云端AI混合模式,为用户提供更智能的操作体验。
西蒙弗雷泽大学和Adobe研究院联合开发的MultiCOIN技术,能够将两张静态图片转换为高质量的过渡视频。该技术支持轨迹、深度、文本和区域四种控制方式,可单独或组合使用。采用双分支架构和分阶段训练策略,在运动控制精度上比现有技术提升53%以上,为视频制作提供了前所未有的灵活性和精确度。