至顶网CIO与应用频道 07月03日 编译:1958年时公司的平均寿命是61年。而今天,情况大不一样了。在时下快速技术创新的大气候下,公司的平均寿命缩短到不到18年 。麦肯锡公司(McKinsey & Co.)董事总经理Dominic Barton将这种变化归功于数字化转型的威力。他在上述第二个链接的文章里提出“科技导致了所有人的基本业务变化”,他还在文章里指城市化、大数据和计算能力的显著改善是促成因素。
全球的企业为了保持竞争力都在开始对各业务部门进行数字化,达到改变运营方式的目的,但许多数字化转型计划都容易犯四个常见的错误:
1、不知道从何着手
笔者的公司最近委托了一个对一千多名高层管理人员和一千多名业务分析师的研究。我们发现企业对转型工作缺乏明确的理解,45%的高层管理人员认为,在制定数字化转型策略时,自己不清楚从何着手。
2、没有设定衡量成功的明确目标
也许更令人担忧的是,在实施转型策略时缺乏明确的结果和和投资回报目标。我们的问卷调查发现,44%的高管认为他们的业务转型计划是在浪费时间。而即便如此,在过去的12个月里,34%的组织却在这些策略上花费了超过50万美元。这些组织基本上是将自己置于潜在的高成本而且回报有限的位置,结果是项目在启动前可能就被搁置了。
3、跃向未来的一步前却不了解当下
各组织为了制定适当的数字化转型战略需要首先了解改变的内容,只有这样才能优化自己的计划。企业需要为业务成果设定目标,而不是简单地优先考虑技术成果。高层管理人员在深入研究转型计划前首先应了解业务驱动因素和内部流程。而事实上,在参加我们问卷调查的高管里,82%没有审查自己组织的内部流程,如若他们审查了组织内部流程,最终会有助于他们制定目标及理解适当的关键绩效指标(KPI)。这可能源于他们不知道如何才能获得更好的流程可见性的事实,因为65%的这些高管表示,如果他们对内部流程有更好的理解,他们就会对自己的策略有更大的信心。
4 、在理解策略前急于制定具体战术
虽然企业领导者认识到了解企业流程对于转型策略至关重要,但许多组织仍然是先一头扎入具体战术里。例如,在我们问卷调查的高层管理人员里,只有不到三分之一(33%)的人有计划在能够提高流程可见度的技术上投资,而这其实是实现数字化转型的关键一步。Couchbase的调查甚至还发现52%的组织认为如果一拥而上,数字化转型项目必将失败。
还有,在我们问卷调查的高层管理人员里,73%的人表示,他们希望增加对自动化、人工智能和机器学习的投资,但却没有真正地了解这些技术的优势和成果。事实上,Databricks的一项研究发现,90%的公司做人工智能(AI)项目是为了改善他们的业务及在竞争对手的吵闹音里有所作为。各种组织从任何数字化转型策略的开始到结束都需要认识内部流程究竟会如何影响自己的业务,进而确定哪种技术是最有效的。
做好企业数字化转型走向成功
数字化转型策略最终必将成为企业运营的重要组成部分,任何组织承受不起落在后面的后果。但转型策略需要对公司内部流程有深刻的了解和洞察。抢步进入转型的企业未能理解究竟需要什么技术才能应对具体的痛点。只有了解基础业务流程后才能彰显那些主要的低效率点。然后,才可以明智地在正确的解决方案上投资,提高生产力和效率,进而增加客户服务。
好文章,需要你的鼓励
这项研究介绍了VisCoder,一个经过专门微调的大语言模型,用于生成可执行的Python可视化代码。研究团队创建了包含20万样本的VisCode-200K数据集,结合了可执行代码示例和多轮修正对话。在PandasPlotBench基准测试中,VisCoder显著优于同等规模的开源模型,甚至在某些方面超越了GPT-4o-mini。研究还引入了自我调试评估模式,证明了反馈驱动学习对提高代码可执行性和视觉准确性的重要性。
这项研究提出了"适应再连续学习"(ACL)框架,一种创新的方法解决预训练模型在连续学习中的稳定性-可塑性困境。通过在学习新任务前先对模型进行适应性调整,ACL使模型既能更好地学习新知识(提高可塑性),又能保留已有知识(维持稳定性)。实验证明,该框架能显著提升各种连续学习方法的性能,为解决人工智能系统中的"灾难性遗忘"问题提供了有效途径。
这篇研究首次关注了CLIP模型文本编码器的对抗鲁棒性问题,提出了LEAF方法(Levenshtein高效对抗性微调)来增强文本编码器的稳健性。实验表明,LEAF显著提高了模型在面对文本扰动时的性能,在AG-News数据集上将对抗准确率从44.5%提升至63.3%。当集成到Stable Diffusion等文本到图像生成模型中时,LEAF显著提高了对抗噪声下的生成质量;在多模态检索任务中,它平均提高了10个百分点的召回率。此外,LEAF还增强了模型的可解释性,使文本嵌入的反演更加准确。
BenchHub是由韩国KAIST和Yonsei大学研究团队开发的统一评估平台,整合了38个基准中的30万个问题,按技能、学科和目标类型进行精细分类。研究显示现有评估基准存在领域分布偏差,而BenchHub通过自动分类系统和用户友好界面,让用户能根据特定需求筛选评估数据。实验证明模型在不同领域的排名差异巨大,强调了定制化评估的重要性。该平台支持多语言扩展和领域特化,为研究人员和开发者提供了灵活评估大语言模型的强大工具。