至顶网CIO与应用频道 06月28日 人物访谈(文/王聪彬):我们常说的金融科技,可以理解为用人工智能和数据找到新的做生意方式。而如今,人工智能在金融行业的应用也早已遍地开花,使用最多的三种技术分别是机器学习、计算机视觉、自然语言处理。
人工智能的第一步是解释事件,之后逐渐形成决策的流程自动化,最终将全部交给人工智能来做决策。金融行业一直在追逐人工智能,其可以通过自动化取代繁琐重复的人工工作、提升客户体验、降低成本。
人工智能不要用ROI来衡量
对于人工智能的态度,中国银行相对国外银行要更积极。Gartner高级研究总监吕俊宽(CK Lu)总结了制约外国银行投入人工智能的三点原因,第一、现有数据、现有制度已经可以帮助银行应付业务上的需求;第二、没有明显的金融科技竞争企业,所以没有通过人工智能转型的强烈需求;第三、外国监管机构重视“可解释性”。而人工智能更像是一个“黑盒子”,人们只能得到结果,并不了解得到结果的过程。
Gartner高级研究总监吕俊宽(CK Lu)
目前人工智能投资还处于早期阶段,金融机构在人工智能的使用上也存在一定挑战,主要包括:第一、商业价值,人工智能不能和ROI(投资回报率)强关联;第二、数据,数据存储分散,管理较难;第三、人才,人工智能人才缺失,需要懂业务和懂人工智能的人合作打造AI应用;第四、工具,单个应用解决单一问题,部署更多的AI应用花费的时间和成本都是巨大的;第五、规模,大规模的应用准确率大幅下降;第六、ROI,各部门各自投资造成资源浪费。
“CIO很难从ROI的角度向老板证明,投资人工智能是有回报的。”吕俊宽表示,在人工智能的投资中很多企业都会陷入ROI的迷思,这会让企业找不到人工智能的投资方向。吕俊宽举例说,Gartner看到,很少有企业通过部署客服机器人达到其ROI目标,客服机器人可以使客户沟通数量增长15%-30%,但不代表可以立即裁掉15%-30%的员工。
所以在评估人工智能是否成功时,吕俊宽建议企业首先要看通过人工智能帮助企业提高了多少效率,其次是人工智能对客户体验带来了多少提升,而不要刻意使用ROI衡量。
人工智能将逐渐规模化
目前金融机构在市场、销售、产品、交易、风险管理等多个领域已经开始人工智能的应用,而未来人工智能也将对整个金融机构结构、人员带来根本性改变。
反欺诈和风险管理是银行业人工智能应用较多的领域,因为欺诈可以称得上是一门生意,银行利用人来补“洞”的速度,远远比不上欺诈的变化速度,所以使用人工智能制定规则定义欺诈行为,可以节省人力,并且有效防止欺诈。中国金融机构在反欺诈和风险管理外,还做了很多创新和尝试,主要聚焦在效率之后的客户体验提升上,像获取客户、客户留存等。
“对于银行人工智能规模化落地的问题,可能还没有很快能够奏效的解决方法。”吕俊宽认为,要实现规模化部署就需要解决人才和基础设施两大问题。
Gartner建议人工智能在落地上要根据机构规模而定。小型银行业务场景相对简单,没有足够的资金进行人工智能投资,所以要以业务为导向,同时与大银行已有服务做匹配;中型银行业务场景相对复杂,人工智能可能会成为其进入“第一梯队”的机会;大型银行面对传统银行和互利网金融的双重竞争压力,需要改变文化和公司治理,才能从项目到产品实现创新。
从全球看来,人工智能部署在公有云和本地数据中的比例分别是40%和35%。在中国,由于监管要求,大部分人工智能都部署在数据中心内。吕俊宽表示,虽然目前监管要求在本地部署,但是金融机构一定要考虑到未来人工智能应用上云的可能。
好文章,需要你的鼓励
IBM Spyre加速器将于本月晚些时候正式推出,为z17大型机、LinuxONE 5和Power11系统等企业级硬件的AI能力提供显著提升。该加速器基于定制芯片的PCIe卡,配备32个独立加速器核心,专为处理AI工作负载需求而设计。系统最多可配置48张Spyre卡,支持多模型AI处理,包括生成式AI和大语言模型,主要应用于金融交易欺诈检测等关键业务场景。
加拿大女王大学研究团队首次对开源AI生态系统进行端到端许可证合规审计,发现35.5%的AI模型在集成到应用时存在许可证违规。他们开发的LicenseRec系统能自动检测冲突并修复86.4%的违规问题,揭示了AI供应链中系统性的"许可证漂移"现象及其法律风险。
意大利初创公司Ganiga开发了AI驱动的智能垃圾分拣机器人Hoooly,能自动识别并分类垃圾和可回收物。该公司产品包括机器人垃圾桶、智能盖子和废物追踪软件,旨在解决全球塑料回收率不足10%的问题。2024年公司收入50万美元,已向谷歌和多个机场销售超120台设备,计划融资300万美元并拓展美国市场。
这项由剑桥大学、清华大学和伊利诺伊大学合作的研究首次将扩散大语言模型引入语音识别领域,开发出Whisper-LLaDA系统。该系统具备双向理解能力,能够同时考虑语音的前后文信息,在LibriSpeech数据集上实现了12.3%的错误率相对改进,同时在大多数配置下提供了更快的推理速度,为语音识别技术开辟了新的发展方向。