至顶网CIO与应用频道 12月26日 北京消息(文/王聪彬):银行业耳熟能详的海外某银行是一家主要经营信用卡、房屋按揭贷款、汽车贷款以及存款的银行机构。1988年成立之初,其还只是美国弗吉尼亚州Signet银行的信用卡部门,但现在已成为全美前十大银行之一。
该创始人给出的答案是:“我们不是一个传统的银行,我们不认为自己是一个银行。我们是以信息为基础战略的公司,第一个成功的产品恰好是在银行业。”
以信息为基础战略就是把数据资产和信息技术放在首位,该银行基于自身数据和外部数据进行二次挖掘,形成差异化优势实现了精准营销。
“但大多数银行在做数据分析时,80%的时间都用在数据准备阶段,而且40%的分析只做了一个分析模型就结束了,并没有和实际业务很好的结合。”Teradata天睿公司大中华区大中华区副总裁、咨询及服务部门总经理唐青说道。
Teradata天睿公司大中华区大中华区副总裁、咨询及服务部门总经理唐青
数据的价值还远远没有充分利用,金融行业要做到在运营型分析和分析型应用中都完成闭环,同时将智能化的设计嵌入到实时的工作流程中,使任何数据在任何时间都能快速响应。
金融行业近几年都在谈Bank 4.0,这也描绘了银行业发展的四个阶段。1.0时代,银行主要以实体网点,单一产品方式发展;2.0时代,银行发展了各种自助渠道,产品更加多元化;3.0时代,银行经营布局更加场景化,嵌入到生活的方方面面;4.0时代,经营生态智能化,实现实时获取服务。
目前我们正进入3.0-4.0的过渡阶段,银行需要用数据驱动业务发展。Teradata天睿公司大中华区金融及航空业咨询服务部总监宋爱华表示,银行要在客户和产品层面建立客户标签体系,Teradata通过图分析、大数据分析方法,可以将客户与客户、客户与产品的关系形成网络,更直观地通过网络进行营销和运营。
Teradata的一大优势也体现在拥有丰富的行业模型,并且一直在坚持研究数据分析模型,让一线分析用户更好地接受和使用,打通最后一公里的缺失。
“Teradata正帮助客户构建前、中、后台统一协调的智能营销体系,帮助客户理解数据,了解数据如何与业务流程匹配,适用于哪些场景,包装成怎样的营销产品、设计成怎样的营销活动等等。”Teradata天睿公司大中华区专业服务金融事业部资深行业顾问刘弦说道,在前台根据模型配置规则推荐给客户相应的服务和产品,在中台把精准营销思路匹配智能化的策略推向一线,在后台进行模型研究,为客户产生价值。
Teradata也在最近推出Teradata Vantage,它是实现无处不在数据智能的唯一平台,提供任意数据分析、任意环境部署及提供重要分析成果所需的速度、规模及灵活性。同时Teradata Vantage融入了专业咨询服务,形成一个整体的解决方案。
目前银行在大数据的使用上都处在早期,所以也造成了各家提供的产品、服务、功能都越来越趋同。在未来银行要通过数据实现真正的精准营销,通过有效的手段应用到有效的场景中,针对有效的对象,才能产生更大的差异化。
如果一个客户在银行如果持有三个产品,那么他的离开率就相对较低。在精准营销上,银行需要搭建场景,更加了解用户的喜好,培养用户习惯,通过持续的关怀让客户留在银行。
未来不同的人,在不同的时间打开银行App都会有不同内容,通过模型、分析可以做到智能的精准推荐,实现千人千面。Teradata天睿公司大中华区商业智能高级经理余俊越指出,已经有一些银行在尝试小范围的个性化定制,当然还有很多像开发、服务等层面上的因素制约,Teradata也在背后用经验、技术帮助银行快速推进这一过程。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。