至顶网CIO与应用频道 05月07日 北京消息:尽管人工智能炒得火热且看似发展前景光明,但目前仅有少数的企业机构能大规模部署与使用人工智能。还有绝大部分仍在努力制定其人工智能战略:确立人工智能的用途与适用性、制定技术与商业模式、并试行早期项目。
在创建敏捷的基础架构以制定高效人工智能战略方面,基础架构与运营(I&O)的领导者面临着挑战。Gartner的数据显示,相比今年的4%,到2022年,25%的企业将投资与部署人工智能项目。
要想成功开展人工智能项目,需要应用新技术、新流程与新的治理模式。但是,由于众多因素,例如:缺乏具备相关技能的员工、基础架构的高速扩增与管理复杂性、呈指数增长的数据量、要求增加对支持决策的见解、以及逐渐紧缩的IT预算,很多机构都难以制定出合理的基础架构战略。这会导致技术应用延后并易处于竞争中的劣势地位。
除了使用基础架构支持人工智能项目之外,基础架构与运营团队也将使用人工智能技术。Gartner预测,到2020年,未能在企业业务中有效利用人工智能的数据中心中,30%将不具备运营与经济效益。
为避免成为上述30%中的一部分,首先需要分析已经成功开展的人工智能项目。这也说明了一个常规模式:要想成功制定战略意味着要将人工智能项目与商业价值相结合。要做到这一点,必须采取四项基本措施;然而,在这些措施中,有些在实施的过程中比其它措施要更加困难并且更加耗时。
1. 使用智能自动化解放技能熟练的IT人员并实现数字化办公。
随着诸如人工智能和物联网这样新的商业动力与数字化商业项目的产生,基础架构与运营领导者则需要面对一个复杂性急剧上升的局面。因此,基础架构与运营团队经常陷入低价值的重复性任务中。例如:当出现问题时,分析日志文件并尝试对其进行根本原因分析。
通过开展基础架构与运营智能自动化并优化实现基础架构管理,可从低价值、重复性任务中解放出技能熟练的IT专业人士。取而代之的是,专注于利用新的人工智能和数据分析技能来重新培训表现能力较好的基础架构与运营团队。通过解决技术技能差距、对变革意识(change-aware)的文化进行投资以及更多功能的角色来实现数字敏捷度(digital dexterity)。
2. 推动业务部门制定高效基础架构战略
为了在人工智能方面取得成功,需要带领基础架构与运营团队,完成从IT服务中心的定位到协同商业部门和首席数据官(CDO)机构的转变。通过与业务部门进行合作,制定出与实际状况相符并与收入关键结果相一致的战略,就能够为人工智能设计出高效且优化的基础架构战略。
与其试图一次性解决所有机构中的问题,不如从小型试点项目开始;使用卓越中心(centres of excellence)来促进成功;并利用敏捷方法快速验证与商业相关的项目并取消起反作用的项目。
3.开展战略数据收集与数据连接项目
诸如数据竖井(data silos)、数据的数量和质量管理方面的挑战,是人工智能项目陷入停滞的另一个主要原因。即使是对于最好的基础架构与运营团队而言,想一次性解决所有的挑战也绝非易事。
那么需要采取的措施就是,通过区分“数据收集”( data collect)与“数据连接”(data connect)来加速人工智能的应用。通过在正确的人工智能体系下使用数据收集及数据管理(清理与转型)战略,可以制定出符合收入关键结果的基础架构战略。而数据连接战略的设计可能会导致人工智能使用过程中产生新的颠覆性结果,因为连接数据元(data elements)可以发掘具有更高价值的功能。
4. 根据人工智能工作负载要求来推动技术选择
提供支持人工智能项目的基础架构可能会带来新的集成复杂性、生产力以及成本方面的挑战。尤其是集成FPGA、ASIC和GPU等计算加速技术的复杂性可能会导致基础架构过度配置或与目标用途不匹配。在很多情况下,基础架构与运营领导者都会过度配置特定技术架构,造成基础架构利用率不足且项目成本超支。
使用人工智能工作负载需求来指导基础架构选择战略,例如:加速计算基础架构、云计算和混合战略的机会投资。选择具有广泛生态系统支持的技术。如果需要部署计算加速器,请选择具有最广泛软件架构支持与具有成熟软件部署环境的技术,从而主动降低风险。
好文章,需要你的鼓励
在2025年KubeCon/CloudNativeCon北美大会上,云原生开发社区正努力超越AI炒作,理性应对人工智能带来的风险与机遇。随着开发者和运营人员广泛使用AI工具构建AI驱动的应用功能,平台工程迎来复兴。CNCF推出Kubernetes AI认证合规程序,为AI工作负载在Kubernetes上的部署设定开放标准。会议展示了网络基础设施层优化、AI辅助开发安全性提升以及AI SRE改善可观测性工作流等创新成果。
意大利ISTI研究院推出Patch-ioner零样本图像描述框架,突破传统局限实现任意区域精确描述。系统将图像拆分为小块,通过智能组合生成从单块到整图的统一描述,无需区域标注数据。创新引入轨迹描述任务,用户可用鼠标画线获得对应区域描述。在四大评测任务中全面超越现有方法,为人机交互开辟新模式。
DeepL作为欧洲AI领域的代表企业,正将业务拓展至翻译之外,推出面向企业的AI代理DeepL Agent。CEO库蒂洛夫斯基认为,虽然在日常翻译场景面临更多竞争,但在关键业务级别的企业翻译需求中,DeepL凭借高精度、质量控制和合规性仍具优势。他对欧盟AI法案表示担忧,认为过度监管可能阻碍创新,使欧洲在全球AI竞争中落后。
MIT研究团队发现,AI系统无需严格配对的多模态数据也能显著提升性能。他们开发的UML框架通过参数共享让AI从图像、文本、音频等不同类型数据中学习,即使这些数据间没有直接对应关系。实验显示这种方法在图像分类、音频识别等任务上都超越了单模态系统,并能自发发展出跨模态理解能力,为未来AI应用开辟了新路径。