至顶网CIO与应用频道 03月15日 北京消息:人工智能是一个模糊的大概念,越来越多的企业开始使用人工智能来推动数字化转型,伴随着人工智能的逐渐成熟,将催生新的数字业态以及商业模式。当然在这个过程中企业还需要重新思考文化、思维模式和商业模式,而不是孤立的技术项目。
人工智能投融资的那些重点
目前可以将中国主流AI企业分为语音识别与自然语言处理、计算机视觉、服务机器人、机器学习平台、AI综合性企业、专用芯片、智能驾驶、金融、教育、医疗、交通等11个大类,其中包含了4类重点技术产品领域、6类重点应用领域,以及AI综合性企业。
各领域已经产生了一些代表企业
语音识别与自然语言处理:科大讯飞、思必驰、出门问问、今日头条、图灵机器人、三角兽科技等
计算机视觉:旷视科技、海康威视、商汤科技、格灵深瞳、依图科技、云从科技等
服务机器人:新松计算器人、科沃斯、优必选、未来伙伴机器人、小i机器人等
机器学习平台:第四范式、达闼科技、KunlunAI
AI综合性企业:百度、阿里、腾讯、京东、搜狗等
专用芯片:寒武纪科技、中星微电子、深鉴科技、西井科技、华米等
智能驾驶:驭势科技、蔚来科技、图森互联、Minieye、纵目科技等
金融:蚂蚁金服、益盟股份、鹏元征信、腾讯征信、量化派、数联铭品等
教育:英语流利说、一起作业、学霸君、作业帮等
医疗:华大基因、卫宁健康、碳云智能、翼展科技、明码生物科技等
交通:四维图新、高德地图、超图软件、滴滴出行、千方科技等
就像资本市场几年前对云计算厂商的青睐一样,人工智能成了新一代投融资的风向标,刚才列举的这些企业在融资上都有着不错的表现,基本都已经实现B轮或C轮的融资,金额也都在数亿到数十亿美元不等。
2017年,全球5起融资最高的事件中,中国企业就占4家,分别为蔚来汽车16亿美元、旷世科技4.6亿美元、商汤科技4.1亿美元、明码生物科技2.4亿。
据创投分析机构CB Insights统计2017年间全球AI新创企业共1100家,在数量占比上美国依旧领先于中国,但在全球AI资金方面,国内新创企业拿到了48%,而美国则为38%。
目前在人工智能的投资上有四个重点关注领域,第一、计算机视觉,这是目前应用较多的一个领域,也有着很高的回报率,其成熟度低于自然语言处理;第二、深度学习,很多互联网企业和硬件设备厂商已经开始做深度学习一体化的产品和服务;第三、服务机器人,还属新兴领域市场空间广阔,在工业和服务领域将有很好的应用前景;第四、智能无人设备,其在家庭、教育、医疗等多个领域拥有应用场景。
是时候该有一个人工智能规划了
根据Gartner的调查结果,有意义的人工智能(AI)部署才刚刚开始。Gartner “2018年CIO议程调查”显示,4%的CIO实施了人工智能,46%的CIO制定了相关计划。
现在很少有企业大规模的部署人工智能,因为与大多数新兴或不熟悉的技术一样,早期采用者在其企业组织中部署人工智能仍然面临许多障碍。
企业应该投入一些时间和资源去了解人工智能技术,标准化的业务流程、简单单一的问题、辅助决策是现在企业最先考虑的应用领域。许多企业都已经可以实现一些不太复杂的人工智能应用来提高效率以及提升服务体验。
另外人才短缺同样是当前人工智能领域的一个大问题,全球AI人才估算约为30万,市场整体需求则在百万以上,再加上人才分布不均,对于人才的争抢也日益激烈。
中国人工智能人才缺口也超过500万,现状上看人工智能创业企业多且迅速,不仅需要具备专业技术,还需要拥有toB经验,这也是人才问题难解的重要因素。
好文章,需要你的鼓励
Anthropic发布SCONE-bench智能合约漏洞利用基准测试,评估AI代理发现和利用区块链智能合约缺陷的能力。研究显示Claude Opus 4.5等模型可从漏洞中获得460万美元收益。测试2849个合约仅需3476美元成本,发现两个零日漏洞并创造3694美元利润。研究表明AI代理利用安全漏洞的能力快速提升,每1.3个月翻倍增长,强调需要主动采用AI防御技术应对AI攻击威胁。
NVIDIA联合多所高校开发的SpaceTools系统通过双重交互强化学习方法,让AI学会协调使用多种视觉工具进行复杂空间推理。该系统在空间理解基准测试中达到最先进性能,并在真实机器人操作中实现86%成功率,代表了AI从单一功能向工具协调专家的重要转变,为未来更智能实用的AI助手奠定基础。
Spotify年度总结功能回归,在去年AI播客功能遭遇批评后,今年重新专注于用户数据深度分析。新版本引入近十项新功能,包括首个实时多人互动体验"Wrapped Party",最多可邀请9位好友比较听歌数据。此外还新增热门歌曲播放次数显示、互动歌曲测验、听歌年龄分析和听歌俱乐部等功能,让年度总结更具互动性和个性化体验。
这项研究解决了现代智能机器人面临的"行动不稳定"问题,开发出名为TACO的决策优化系统。该系统让机器人在执行任务前生成多个候选方案,然后通过伪计数估计器选择最可靠的行动,就像为机器人配备智能顾问。实验显示,真实环境中机器人成功率平均提升16%,且系统可即插即用无需重新训练,为机器人智能化发展提供了新思路。