至顶网CIO与应用频道 01月31日 北京消息(文/王聪彬):“工业互联网是面向工业智能化的需求。”中国信息通信研究院院长刘多曾说过,工业互联网不仅仅是一个网络,在打造网络的同时可以产生新的业态和模式,这对于制造业转型发展是非常重要的。
工业物联网、工业互联网、工业云虽然名称繁多,但它们都代表着同一个含义。不仅仅是收集数据、分析数据,工业互联网是关注资产从设计、制造、销售、服务等全过程,实现整体的优化与创新。
传统的工业互联网的架构主要分为三层:终端设备层、数据采集平台层、应用层。其中设备层和平台层是工业物联网中最关键的环节。
对工业互联网一个形象的比喻是,设备就好比感知器官,平台就好比大脑。感知器官负责数据的采集,大脑负责数据的分析处理,也就是常说的端到云。
随着数据量的增长,工业互联网平台的负担会越来越大,如果在边缘设备上就可以进行预处理就可以更快的进行响应。“边缘计算”的出现就像人的感知器官一样,并不是全部回到大脑作出反应,很多是感知器官会直接作出反应。工业互联网则通过在设备端加入盒子的方式,让一些数据在边缘就可以得到简单的计算。当然平台层仍然是工业物联网的核心,支撑工业应用的开发。
市面上工业互联网平台少则数十,多则上百。几个代表像GE Predix工业互联网平台、西门子MindSphere、PTC ThingWorx工业创新平台、树根互联根云平台、徐工Xrea工业互联网平台、海尔COSMO工业互联网平台都有着各自的特色和发展路径。
GE Predix工业互联网平台以资产为中心,从边缘到云再回到边缘。其推动垂直工业领域应用,平台将聚焦航空、能源、医疗领域,围绕资产绩效管理、现场服务、智慧工厂为客户开发有价值的应用,加速工业互联网生态圈的建设。
西门子MindSphere是基于云Cloud Foundry而构建的开放式物联网操作系统。可帮助企业实现真实世界中的产品、工厂、机器和系统的连接,以提取并分析真实的性能和应用数据。
PTC ThingWorx工业创新平台倡导将数字世界和物理世界融合实现工业领域创新,拥有强大的平台能力,提供针对工程和制造领域而设计的角色应用、庞大的合作伙伴和客户生态系统,以及专为工业物联网客户和合作伙伴设计的全新服务。
树根互联根云平台以服务中国企业,特别是中小企业作为开发目标,以N+IIoT用互联网和物联网技术来提能工业应用,通过端到端的价值输出,为需要物联应用的工业企业,提供从硬件接入、电信网络流量购买、机器间通信、云资源编排、大数据处理到物联应用开发的打包解决方案。
徐工Xrea工业互联网平台是一个“能为设备提供精准服务的平台”,其可以实时、精准监测设备的运营及运行情况,从而为设备提供全生命周期服务、预测性维护服务和创新商业模式等三大核心价值。
海尔COSMO工业互联网平台是海尔在打造互联工厂的实践中,逐步构建的一个开放共享的生态体系。其让用户全流程参与产品设计研发、生产制造、物流配送、迭代升级等环节,真正实现了人人定制。
虽然有这么多的工业互联网平台,但都殊途同归,利用数据在各个层面进行创新。
当然中国制造企业在信息化、自动化水平上存在参差不齐的问题,能否快速接入是一个需要探讨的问题。当然还有像设备采集复杂度过高,缺乏标准,以及没有一个平台可以聚集所有的生态系统等问题。
中国工程院院士倪光南也提出,建设广泛兼容、安全可靠的工业互联网平台,对中国工业界的国际竞争力培育具有战略意义。无论从国家发展战略层还是从单纯的市场发展趋势出发,中国都必须建立完全自主、安全的工业互联网平台。
其实工业物联网大多都是闭源,通过API进行连接,这也为很多制造企业带来顾虑,尤其是数据层面安全。制造业不同于互联网行业的特性,其试错风险太高,未来标准化的部署则可能突破这一瓶颈。
好文章,需要你的鼓励
微软近年来频繁出现技术故障和服务中断,从Windows更新删除用户文件到Azure云服务因配置错误而崩溃,质量控制问题愈发突出。2014年公司大幅裁减测试团队后,采用敏捷开发模式替代传统测试方法,但结果并不理想。虽然Windows生态系统庞大复杂,某些问题在所难免,但Azure作为微软核心云服务,反复因配置变更导致客户服务中断,已不仅仅是质量控制问题,更是对公司技术能力的质疑。
Meta研究团队发现仅仅改变AI示例间的分隔符号就能导致模型性能产生高达45%的巨大差异,甚至可以操纵AI排行榜排名。这个看似微不足道的格式选择问题普遍存在于所有主流AI模型中,包括最先进的GPT-4o,揭示了当前AI评测体系的根本性缺陷。研究提出通过明确说明分隔符类型等方法可以部分缓解这一问题。
当团队准备部署大语言模型时,面临开源与闭源的选择。专家讨论显示,美国在开源AI领域相对落后,而中国有更多开源模型。开源系统建立在信任基础上,需要开放数据、模型架构和参数。然而,即使是被称为"开源"的DeepSeek也并非完全开源。企业客户往往倾向于闭源系统,但开源权重模型仍能提供基础设施选择自由。AI主权成为国家安全考量,各国希望控制本地化AI发展命运。
香港中文大学研究团队开发出CALM训练框架和STORM模型,通过轻量化干预方式让40亿参数小模型在优化建模任务上达到6710亿参数大模型的性能。该方法保护模型原生推理能力,仅修改2.6%内容就实现显著提升,为AI优化建模应用大幅降低了技术门槛和成本。